

## Synthesis, characterization and spectral correlations in substituted styryl 6-methyl-2-naphthyl ketones

G Thirunarayanan

Department of Chemistry, Annamalai University, Annamalainagar 608 002, India  
E-mail: drgtnarayanan@gmail.com

Received 8 February 2007; accepted (revised) 27 June 2007

Thirteen substituted styryl 6-methyl-2-naphthyl ketones [(2E)-1-(6-methyl-2-naphthyl)-3-phenyl-2-propen-1-ones] are synthesized using eco-friendly benign stereo selective crossed - aldol condensation reaction assisted by silica-sulphuric acid reagent under solvent-free conditions. The yield of chalcones is more than 90%. No decrease in the yield is observed during synthesis and demonstrating that silica-sulphuric acid can be reused in crossed-aldol condensation reaction without environmental discharge. They have been characterized by their physical constants, micro analysis, infrared, NMR and mass spectral data. These spectral data are subjected to correlate various Hammett substituent constants with single and multiparameter correlation equations. From the results of statistical analysis, the influence of electronic effects of substituents on the spectral data of carbonyl group, vinyl proton and carbons of the ketones are explained.

**Keywords:** Styrylketones, aldol condensation, silica-sulphuric acid, chalcones

In recent years, chemists are paying more interest in the application of solvent free methods<sup>1</sup> in organic reactions like Claisen-Schmidt<sup>2</sup>, Knovenogal<sup>3</sup>, Aldol<sup>4</sup> and Crossed-aldol<sup>5</sup> for synthesis of carbonyl compounds due to the operational simplicity, easier work-up, better yield and eco-friendly nature. Among these reactions aldol condensation is useful for the formation of carbon-carbon bond in many kinds of carbonyl compounds<sup>6</sup>. The methylene unit of chalcones derived from cyclic or acyclic ketones are found in many naturally occurring compounds and they are useful for the synthesis of pyrimidine derivatives<sup>7</sup>. The basic skeleton of chalcones is widely figured in natural products, are known to have multipronged activity<sup>8</sup>. Many of the chalcones are used as agrochemicals and drugs<sup>9</sup>. Condensation of ketones with aldehydes is of special interest and crossed-aldol condensation is an effective pathway for those preparations. But traditional acid-base catalyzed reactions suffer from the reverse reaction<sup>10</sup> and self condensation of starting molecules<sup>11</sup>.

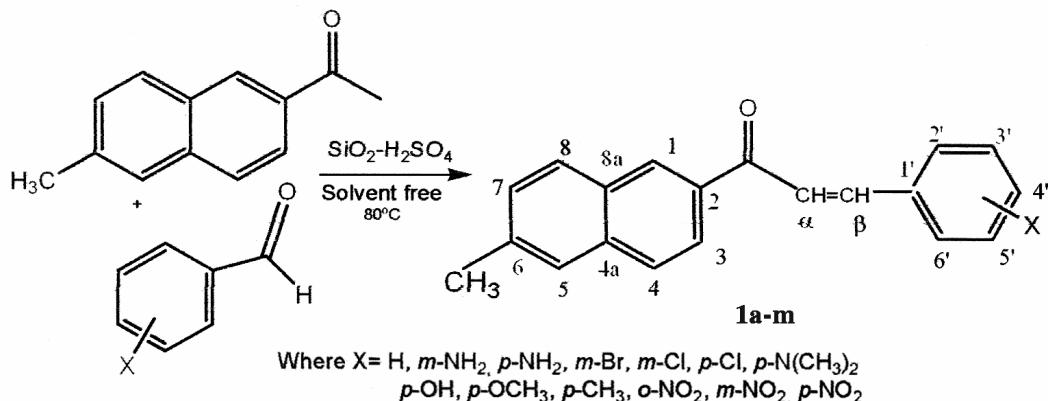
Many reagents and co-ordination complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn (II) ions with various ligands have been employed for aldol condensation<sup>12</sup>. Metal salts of Cp<sub>2</sub>ZrH<sub>2</sub> are used for condensation of cycloalkanones<sup>13</sup> KF-Al<sub>2</sub>O<sub>3</sub> and bis (*p*-methoxy phenyl) tellurides have been used for crossed condensation under microwave irradiation<sup>14</sup>.

Anhydrous RuCl<sub>3</sub> and TiCl<sub>3</sub> (SO<sub>3</sub>CF<sub>3</sub>) have also been applied for aldol condensation reactions under solvent free conditions<sup>15</sup>. Now more attention has been paid to synthesis of acyclic and cyclic chalcones by chemists and scientists<sup>16</sup>. Kalluraya<sup>17</sup> *et al.* reported to obtain 60-70% yield of sydnone chalcones under solvent free condition by aldol condensation reaction by grinding of ketones and aldehydes with sodium hydroxide. Hassan<sup>18</sup> *et al.* synthesized various 2E-3-aryl-1-heteroarylprop-2-en-1-ones by eco-friendly condensation reaction in sodium hydroxide-water heterogeneous phase reaction medium. Silica-sulphuric acid is used as a versatile and stable solid acid catalyst for organic synthesis. An efficient and selective method for condensation of 6-methyl-2-acetonaphthones with various *m*- and *p*-substituted benzaldehydes under solvent free conditions using silica-sulphuric acid as a reagent in an oven to yields the respective *E*-2-propen-1-ones is reported. The promoting effect of silica-sulphuric acid in this reaction has shown good performance and its catalytic activity is proved by obtaining higher percentage of yields. The product was isolated and the remaining catalyst was washed and reused with fresh substrate for further reactions. No decrease in the yield was observed, demonstrating that silica-sulphuric acid can be reused in crossed-aldol condensation reaction without environmental discharge.

## Experimental Section

### Materials and Methods

All chemicals and analytical grade solvents were purchased from E-Merck chemical company. Melting points of all chalcones were determined in open glass capillaries on Mettler FP51 melting point apparatus and are uncorrected. Infrared spectra (KBr) were recorded on a Perkin Elmer-Fourier transform spectrophotometer. The nuclear magnetic resonance spectra, both  $^1\text{H}$  and  $^{13}\text{C}$ , of chalcones were recorded using UNITYPLUS-300 KIBSIPS 300 MHz spectrometer. Electron impact (EI, 70 eV) and chemical ionization (CI) mass spectra were recorded with a Finnigan MAT 95S spectrometer. Micro analyses of all chalcones were performed in Perkin-Elmer 240C Analyzer.


### General procedure for synthesis of substituted styryl 6-methyl-2-naphthyl ketones:

6-Methyl-2-naphthyl ketones (2 mmole), *m*-and *p*-substituted benzaldehydes (2.2 mmole) and silica-sulphuric acid (1.5 g equal to 4 mmole of  $\text{H}^+$ ) were mixed thoroughly, placed in a glass tube and capped (**Scheme I**). The mixture was heated in an oven at 80°C for 2-3.5 hr. After complete conversion of the ketones as monitored by TLC, the mixture was cooled to room temperature. Dichloromethane (20-30 mL) was added and warmed for 3-5 minutes. The reagent was removed by filtration. The filtrate was concentrated and the solid residue was recrystallised from ethanol to afford the pure products as pale yellow glittering solids **1a-m** (ref. 19). The catalyst was recycled by washing the solid reagent with ethyl acetate (20 mL) followed by drying in an oven at 50°C for two hr and it is reused for another reaction run. Based on Hays and Timmons<sup>20,21</sup> infrared carbonyl-stretching frequencies of *s-cis* and *s-trans*

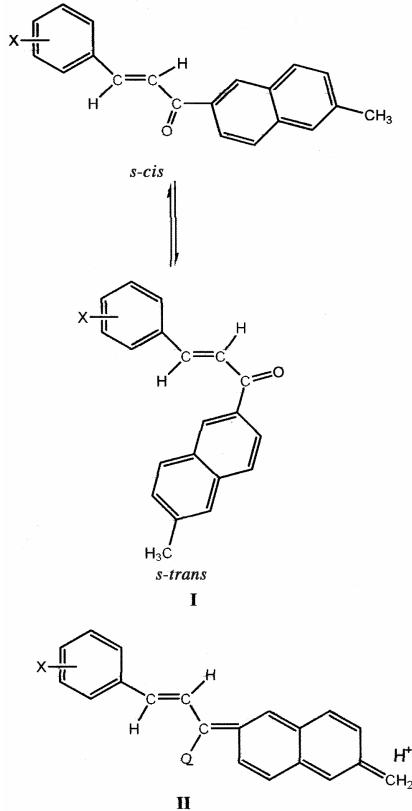
conformers are assigned. The NMR chemical shifts (ppm) of ethylene  $\alpha, \beta$  protons and carbons are assigned based on reported in earlier literature values<sup>22-27</sup> of the compound **1a**. The characterization data of all chalcones are summarized in **Table I**.

### Substituent effects

Correlation analysis involves the prediction of ground state molecular equilibrations<sup>29</sup> of organic substrates such as *s-cis* and *s-trans* isomers of alkenes, alkynes, benzoylbromides, benzoylchlorides, diphenylamine<sup>30</sup> styrenes and  $\alpha, \beta$ -unsaturated ketones from spectral data. Their use in structure parameter correlations has now become popular for studying transition state study of reaction mechanisms<sup>31</sup> biological activities and normal coordinate analysis<sup>32</sup>. Dhami and Stothers<sup>33</sup> have extensively studied the  $^1\text{H}$  NMR spectra of a large number of acetophenones and styrenes with a view to establish the validity of the additivity of substituent effects in aromatic shieldings, first observed by Lauterber<sup>34</sup>. Savin and coworkers<sup>35</sup> obtained the NMR spectra of unsaturated ketones of the type  $\text{RC}_6\text{H}_4\text{-CH=CH-COCMe}_3$  and sought Hammett correlations for the ethylenic protons. Solcaniova and coworkers<sup>36</sup> have measured  $^1\text{H}$  and  $^{13}\text{C}$  NMR spectra of substituted phenyl styrenes and substituted styryl phenyls and obtained good Hammett correlations for the olefinic protons and carbons. Nowadays scientists<sup>37</sup> have shown greater interest to correlate the group frequencies of spectral data with Hammett substituent constants to explain the substituent effect of organic compounds. Recently Sung and Nadar<sup>38</sup> investigate elaborately the single and multi substituent effects by spectral data of biphenyl and 9H-Fluorenyl chalcones. Within the above view there is no information available in the



Scheme I


**Table I**—Physical constants, microanalysis and mass spectral data of substituted styryl 6-methyl-2-naphthyl ketones

| Entry     | Mol. formula                                    | Mol. weight | Yield (%) | m.p. °C                  | Found % (Calcd)  |               |               | Mass m/z                                                          |
|-----------|-------------------------------------------------|-------------|-----------|--------------------------|------------------|---------------|---------------|-------------------------------------------------------------------|
|           |                                                 |             |           |                          | C                | H             | N             |                                                                   |
| <b>1a</b> | C <sub>20</sub> H <sub>16</sub> O               | 272.34      | 96        | 123-124<br>124 (ref. 28) | —                | —             | —             | 272[M <sup>+</sup> ], 169, 141, 131, 127, 103,<br>77              |
| <b>1b</b> | C <sub>20</sub> H <sub>17</sub> NO <sub>2</sub> | 287.35      | 91        | 106-107                  | 83.42<br>(83.59) | 5.90<br>5.96  | 4.81<br>4.87) | 287[M <sup>+</sup> ], 271, 169, 146, 141, 127,<br>118             |
| <b>1c</b> | C <sub>20</sub> H <sub>17</sub> NO <sub>2</sub> | 287.35      | 93        | 95-96                    | 83.54<br>(83.59) | 5.96<br>5.96  | 4.85<br>4.87) | 287[M <sup>+</sup> ], 286, 271, 169, 146, 141,<br>127, 118, 103   |
| <b>1d</b> | C <sub>20</sub> H <sub>15</sub> BrO             | 351.23      | 94        | 82-83                    | 68.30<br>(68.30) | 4.25<br>4.30) | —             | 351[M <sup>+</sup> ], 208, 196, 180, 141, 65                      |
| <b>1e</b> | C <sub>20</sub> H <sub>15</sub> ClO             | 306.78      | 92        | 146-47                   | 78.25<br>(78.30) | 4.86<br>4.93) | —             | 306[M <sup>+</sup> ], 268, 168, 137, 103, 65.                     |
| <b>1f</b> | C <sub>20</sub> H <sub>15</sub> ClO             | 306.78      | 95        | 154-55                   | 78.28<br>(78.30) | 4.90<br>4.93) | —             | 306[M <sup>+</sup> ], 280, 168, 140, 137, 128,<br>103, 77, 65.    |
| <b>1g</b> | C <sub>22</sub> H <sub>21</sub> NO              | 315.40      | 94        | 73-74                    | 83.72<br>(83.78) | 6.61<br>6.71) | 4.39<br>4.44) | 315[M <sup>+</sup> ], 271, 168, 146, 142, 140,<br>128, 91, 77     |
| <b>1h</b> | C <sub>20</sub> H <sub>16</sub> O <sub>2</sub>  | 228.33      | 91        | 80-81                    | 83.29<br>(83.31) | 5.48<br>5.50) | —             | 288[M <sup>+</sup> ], 271, 199, 141, 128, 119,<br>107, 103, 91    |
| <b>1i</b> | C <sub>21</sub> H <sub>18</sub> O <sub>2</sub>  | 302.36      | 95        | 131-33                   | 83.36<br>(83.42) | 5.72<br>6.00) | —             | 302[M <sup>+</sup> ], 271, 168, 140, 136, 128,<br>105, 91, 77, 65 |
| <b>1j</b> | C <sub>21</sub> H <sub>18</sub> O               | 286.36      | 96        | 109-10                   | 88.03<br>(88.08) | 6.29<br>6.34) | —             | 286[M <sup>+</sup> ], 271, 168, 140, 128, 117,<br>103, 91, 77, 65 |
| <b>1k</b> | C <sub>20</sub> H <sub>15</sub> NO <sub>3</sub> | 317.33      | 92        | 106-07                   | 75.63<br>(75.70) | 4.62<br>4.76  | 4.09<br>4.41) | 317[M <sup>+</sup> ], 168, 142, 126, 116, 103,<br>91              |
| <b>1l</b> | C <sub>20</sub> H <sub>15</sub> NO <sub>3</sub> | 317.33      | 94        | 134-35                   | 75.65<br>(75.70) | 4.70<br>4.76  | 4.32<br>4.41) | 317[M <sup>+</sup> ], 168, 142, 126, 116, 103,<br>91, 77, 65.     |
| <b>1m</b> | C <sub>20</sub> H <sub>15</sub> NO <sub>3</sub> | 317.33      | 96        | 177-78                   | 75.68<br>(75.70) | 4.72<br>4.76  | 4.39<br>4.41) | 317[M <sup>+</sup> ], 168, 142, 126, 116, 103,<br>91, 77, 65      |

literature in the past with substituted styryl 6-methyl-2-naphthyl ketones. Hence thirteen chalcones of the above type using silica-sulphuric acid technique are synthesized and the substituent effects of above compounds are investigated from infrared and NMR spectra were made.

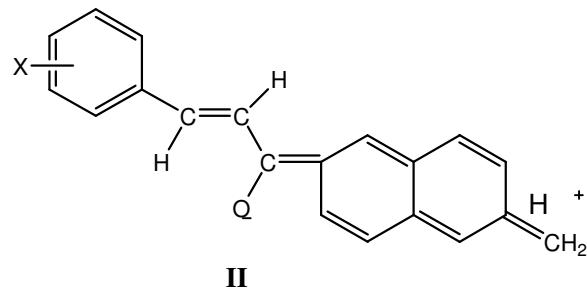
#### Substituent effects from infrared spectra

The carbonyl stretching frequencies (cm<sup>-1</sup>) of *s-cis* and *s-trans* isomers of present study are presented in **Table II** and the corresponding conformers are shown in I. The infrared spectra were all recorded on the KBr disc in order to avoid the shoulder formation<sup>39</sup> on carbonyl doublets. The *s-cis* conformers exhibit higher frequencies than the *s-trans* conformers due to the bulkier naphthalene group causes greater strain and they enhance the higher absorption of carbonyl group of *s-cis* isomer (1651-1680 cm<sup>-1</sup>) than the *s-trans* isomer (1608-1633 cm<sup>-1</sup>). These frequencies are separately analyzed through various Hammett sigma<sup>40</sup> constants. From the statistical analysis, fair degree of correlation obtained [r=0.945, I=1660.53, ρ=1.76, s=0.32, n=13] with Hammett sigma constants in *s-cis* conformers. Hammett σ<sub>I</sub> constants in *s-trans* isomers produce a fair correlation with carbonyl



**Table II**—Spectral data of substituted styryl 6-methyl-2-naphthyl ketones

| Entry     | IR $\nu$ (cm <sup>-1</sup> ) |                          |       |                         | <sup>1</sup> H NMR $\delta$ (ppm) |               |                   |                                                    | s, 3H,<br>-CH <sub>3</sub><br>(Nap) |
|-----------|------------------------------|--------------------------|-------|-------------------------|-----------------------------------|---------------|-------------------|----------------------------------------------------|-------------------------------------|
|           | CO<br>( <i>s-cis</i> )       | CO<br>( <i>s-trans</i> ) | CH=CH | Subst. in<br>Ph. ring   | d,1H, $\alpha$                    | d,1H, $\beta$ | m, Ar-H           | Subst. in<br>Ph. ring                              |                                     |
| <b>1a</b> | 1658                         | 1616                     | 985   | —                       | 8.063                             | 8.107         | 7.369-7.844 (11H) | —                                                  | 2.454                               |
| <b>1b</b> | 1661                         | 1616                     | 1018  | 3532(-NH <sub>2</sub> ) | 8.058                             | 8.093         | 7.155-7.876 (10H) | 4.430<br>(s,2H, NH <sub>2</sub> )                  | 2.637                               |
| <b>1c</b> | 1651                         | 1613                     | 974   | 3527(-NH <sub>2</sub> ) | 8.082                             | 8.992         | 7.760-7.940 (10H) | 4.187<br>(s,2H, NH <sub>2</sub> )                  | 2.543                               |
| <b>1d</b> | 1666                         | 1625                     | 1013  | —                       | 8.040                             | 8.090         | 7.342-7.892 (10H) | —                                                  | 2.695                               |
| <b>1e</b> | 1660                         | 1627                     | 1029  | —                       | 8.056                             | 8.100         | 7.320-7.843 (10H) | —                                                  | 2.864                               |
| <b>1f</b> | 1663                         | 1625                     | 998   | —                       | 8.049                             | 8.091         | 7.129-8.000 (10H) | —                                                  | 2.395                               |
| <b>1g</b> | 1651                         | 1608                     | 984   | —                       | 8.051                             | 8.093         | 6.830-7.880 (10H) | 2.078<br>(s,6H, N(CH <sub>3</sub> ) <sub>2</sub> ) | 2.621                               |
| <b>1h</b> | 1656                         | 1625                     | 1014  | 3541(-OH)               | 7.974                             | 8.021         | 6.893-7.789 (10H) | 4.621<br>(s,1H, OH)                                | 2.287                               |
| <b>1i</b> | 1655                         | 1619                     | 1005  | —                       | 8.051                             | 8.093         | 7.012-7.874 (10H) | 3.655<br>(s,3H, OCH <sub>3</sub> )                 | 2.721                               |
| <b>1j</b> | 1655                         | 1607                     | 973   | —                       | 8.056                             | 8.098         | 7.282-7.898 (10H) | 2.679<br>(s,3H, CH <sub>3</sub> )                  | 2.366                               |
| <b>1k</b> | 1680                         | 1633                     | 1014  | —                       | 8.072                             | 8.073         | 7.575-8.045 (10H) | —                                                  | 2.721                               |
| <b>1l</b> | 1674                         | 1622                     | 1024  | —                       | 8.082                             | 8.154         | 7.354-8.042 (10H) | —                                                  | 2.593                               |
| <b>1m</b> | 1677                         | 1624                     | 1020  | —                       | 8.091                             | 8.291         | 7.370-8.092 (10H) | —                                                  | 2.630                               |


frequencies [ $r=0.901$ ,  $I=1611.93$ ,  $\rho=2.55$ ,  $s=0.42$ ,  $n=13$ ]. Remaining  $\sigma^+$ ,  $\sigma_I$  and  $\sigma_R$  constants failed for producing a correlation. The reason for the failed correlation is the conjugation between the C=O and the -CH=CH- parts are important due to non-co planarity arising out of non bonded repulsion between naphthalene and styryl parts in the systems and the cross conjugation of methyl substituent in sixth position of naphthyl ring as shown in II. Due to the extended conjugation by the naphthyl ring reduces the correlation on carbonyl frequencies. In view of the inability of some  $\sigma$  constants to produce individually satisfactory correlations, it was thought worthwhile to seek multiple correlations involving either  $\sigma_I$  and  $\sigma_R$  constants or F and R parameters. This may be treated as exceptional and by and large it is to be realized that the collective participation of either  $\sigma_I$  and  $\sigma_R$  constants or F and R parameters is more dependent than that of any single parameter role to predict the substituent effects. The correlation equations are:

$$\nu\text{C=O}(\text{s-cis}) \text{ (cm}^{-1}\text{)} = (1658.004 \pm 3.149) + (23.278 \pm 6.240) F + (10.918 \pm 2.547) R \quad \dots (1)$$

$(R = 0.914, n=13, P > 95\%)$

$$\nu\text{C=O}(\text{s-trans}) \text{ (cm}^{-1}\text{)} = (1611.403 \pm 2.458) + (24.252 \pm 3.214) \sigma_I - (1.576 \pm 0.257) \sigma_R \quad \dots (2)$$

$(R = 0.908, n=13, P > 92\%)$



$$\nu\text{C=O}(\text{s-trans}) \text{ (cm}^{-1}\text{)} = (1612.521 \pm 3.648) + (20.324 \pm 3.254) F + (1.364 \pm 0.218) R \quad \dots (3)$$

$(R = 0.904, n=13, P > 92\%)$

#### Substituent effects from NMR Spectra

##### <sup>1</sup>H NMR Spectra

The <sup>1</sup>H NMR spectral signals of ethylenic protons in all chalcones investigated are assigned. The observation that H <sub>$\alpha$</sub>  protons appear at higher field than that of H <sub>$\beta$</sub>  protons makes the subject very interesting. This may possibly due to the polarization of C=C double bond in the system being predominantly caused by the carbonyl group so as to make electron density greater at  $\alpha$  position than that of  $\beta$  position. The chemical shifts of H <sub>$\alpha$</sub>  protons are at higher field than those of H <sub>$\beta$</sub>  protons in all chalcones. The ethylenic proton signals give an AB pattern and the  $\beta$  protons doublet in most cases is well separated from

the signals of the aromatic protons. The chemical shifts of  $\alpha$ ,  $\beta$  protons are given in **Table II**. All the attempted correlations involving substituent parameters gave only positive  $\rho$  values. This shows normal substituent effects operate in all the chalcones. The chemical shifts observed for  $H_\alpha$  and the  $H_\beta$  protons in the present investigation are correlated satisfactorily with Hammett sigma<sup>40</sup> and  $\sigma^+$  constants. In some cases correlation of  $H_\alpha$  with  $\sigma_R$  values are well correlated ( $r=0.993$ ).  $H_\beta$  chemical shifts with  $\sigma_I$  and  $\sigma_R$  are not correlated well. This is due to the fact that values are incapable of predicting chemical shifts individually and domination of cross conjugation between carbonyl group and methyl group in naphthyl ring. The correlation equations (4-8) are:

$$H_{\alpha(\text{ppm})} = (8.045 \pm 0.023) + (0.042 \pm 0.012)\sigma \quad \dots (4) \\ (r=0.936, s=0.025, n=13)$$

$$H_{\alpha(\text{ppm})} = (8.052 \pm 0.126) + (0.026 \pm 0.010)\sigma^+ \quad \dots (5) \\ (r=0.924, s=0.055, n=13)$$

$$H_{\alpha(\text{ppm})} = (8.057 \pm 0.021) + (0.064 \pm 0.015)\sigma_R \quad \dots (6) \\ (r=0.993, s=0.021, n=13)$$

$$H_{\beta(\text{ppm})} = (8.097 \pm 0.048) + (0.035 \pm 0.001)\sigma \quad \dots (7) \\ (r=0.930, s=0.065, n=13)$$

$$H_{\beta(\text{ppm})} = (8.099 \pm 0.043) + (0.021 \pm 0.004)\sigma \quad \dots (8) \\ (r=0.912, s=0.021, n=13)$$

The multiple correlation involving  $\sigma_I$  and  $\sigma_R$  or  $F$  and  $R$  values with these chemical shifts for these ketones are successful and they generated the equations (9-11) are:

$$H_{\alpha(\text{ppm})} = (8.051 \pm 0.016) + (0.017 \pm 0.036)\sigma_I \\ + (0.057 \pm 0.031)\sigma_R \quad \dots (9) \\ (R = 0.999, n=13, P > 99\%)$$

$$H_{\alpha(\text{ppm})} = (8.086 \pm 0.020) - (0.601 \pm 0.041)F \\ + (0.541 \pm 0.025)R \quad \dots (10) \\ (R = 0.918, n=13, P > 90\%)$$

$$H_{\beta(\text{ppm})} = (8.097 \pm 0.039) + (0.015 \pm 0.003)\sigma_I \\ + (0.046 \pm 0.001)\sigma_R \quad \dots (11) \\ (R = 0.913, n=13, P > 92\%)$$

### <sup>13</sup>C NMR Spectra

From <sup>13</sup>C NMR spectra the observed <sup>13</sup>C chemical shifts of  $C_\alpha$  and the  $C_\beta$  carbons are presented in **Table III**. These chemical shifts are correlated with various Hammett substituent constants. From the results of statistical analysis of substituent effects on  $C_\alpha$  and  $C_\beta$  carbons produce a fair degree of correlation with Hammett sigma<sup>40</sup> constants except  $\sigma_I$  and  $\sigma_R$ . The

degree of transmission of electronic effects is found to be higher with  $C_\alpha$  carbon ( $r=0.974$  for  $\sigma$ ) than  $C_\beta$  carbon ( $r=0.900$  for  $\sigma$ ). In both cases the resonance effect of the substituents fails to produce the correlation on vinyl carbons. Because, the phenyl ring and the vinyl part are not co-planar due to carbon-carbon single bond rotation, that the deviations vary with the type of substitution. The successful correlation equations (12-15) are:

$$C_{\alpha(\text{ppm})} = (120.451 \pm 0.012) + (1.867 \pm 0.010)\sigma \quad \dots (12) \\ (r=0.974, s=0.288, n=13)$$

$$C_{\alpha(\text{ppm})} = (120.798 \pm 0.152) + (1.160 \pm 0.110)\sigma^+ \quad \dots (13) \\ (r=0.964, s=0.387, n=13)$$

$$C_{\alpha(\text{ppm})} = (119.567 \pm 0.241) + (3.319 \pm 0.254)\sigma_I \quad \dots (14) \\ (r=0.913, s=0.581, n=13)$$

$$C_{\beta(\text{ppm})} = (1143.167 \pm 1.265) + (1.969 \pm 0.066)\sigma \quad \dots (15) \\ (r=0.900, s=1.275, n=13)$$

Uniformly,  $\sigma_I$  and  $\sigma_R$  parameters or  $F$  and  $R$  values adequately explain the substituent effects in all chalcones evidenced from the multi correlation equations (16-19).

$$C_{\alpha(\text{ppm})} = (119.721 \pm 0.340) + (3.047 \pm 0.124)\sigma_I + \\ (0.485 \pm 0.065)\sigma_R \quad \dots (16) \\ (R = 0.918, n=13, P > 90\%)$$

$$C_{\alpha(\text{ppm})} = (120.777 \pm 0.395) + (2.232 \pm 0.783)F + \\ (1.181 \pm 0.496)R \quad \dots (17) \\ (R = 0.936, n=13, P > 90\%)$$

$$C_{\beta(\text{ppm})} = (143.734 \pm 0.655) - (0.308 \pm 1.447)\sigma_I + \\ (2.819 \pm 1.257)\sigma_R \quad \dots (18) \\ (R = 0.905, n=13, P > 90\%)$$

$$C_{\beta(\text{ppm})} = (143.577 \pm 0.989) + (0.315 \pm 1.961)F + \\ (1.1292 \pm 0.214)R \quad \dots (19) \\ (R = 0.911, n=13, P > 90\%).$$

### Conclusion

This synthetic methodology is very efficient and selective protocol for crossed-aldol condensation of 6-methyl-2-naphthyl ketones and aldehydes to produce high yield of 6-methyl-2-naphthyl chalcones in the presence of a reusable and environmentally beginning reaction catalyst silica-sulphuric acid. Operative simplicity, easy procedure, better yield including washing the mixture followed by evaporation of the solvent are other advantages of this method. In correlation analyses of infrared spectral data,  $\sigma$

**Table III**— $^{13}\text{C}$  NMR of substituted styryl 6-methyl-2-naphthyl ketones

| Entry     | $\text{C}_\alpha$ | $\text{C}_\beta$ | $\text{C}=\text{O}$                        | $\text{C}_1$    | $\text{C}_2$  | $\text{C}_3$  | $\text{C}_4$  | $\text{C}_5$  | $\text{C}_6$  |
|-----------|-------------------|------------------|--------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| <b>1a</b> | 120.488           | 142.821          | 192.047                                    | 128.634         | 132.996       | 125.338       | 127.398       | 126.417       | 136.921       |
| <b>1b</b> | 120.628           | 144.147          | 190.210                                    | 128.424         | 133.296       | 125.058       | 127.698       | 126.821       | 136.381       |
| <b>1c</b> | 118.972           | 141.887          | 188.620                                    | 128.214         | 133.592       | 125.076       | 127.075       | 125.948       | 136.994       |
| <b>1d</b> | 121.421           | 141.979          | 191.254                                    | 128.574         | 133.196       | 125.903       | 127.621       | 126.032       | 136.371       |
| <b>1e</b> | 121.686           | 141.015          | 191.784                                    | 128.230         | 133.731       | 125.739       | 127.695       | 126.752       | 137.839       |
| <b>1f</b> | 120.912           | 142.958          | 191.560                                    | 128.304         | 133.498       | 125.142       | 127.964       | 125.916       | 136.904       |
| <b>1g</b> | 119.230           | 141.530          | 189.524                                    | 128.530         | 132.949       | 125.800       | 127.699       | 126.763       | 136.953       |
| <b>1h</b> | 119.900           | 143.210          | 191.200                                    | 127.992         | 132.875       | 125.713       | 126.751       | 126.405       | 136.990       |
| <b>1i</b> | 120.143           | 144.669          | 190.201                                    | 127.530         | 134.286       | 125.061       | 127.632       | 126.703       | 137.530       |
| <b>1j</b> | 119.524           | 144.376          | 198.621                                    | 128.643         | 134.831       | 124.721       | 127.996       | 126.596       | 137.821       |
| <b>1k</b> | 121.421           | 144.126          | 192.254                                    | 128.407         | 134.201       | 125.630       | 126.841       | 126.472       | 137.439       |
| <b>1l</b> | 123.943           | 144.669          | 193.251                                    | 128.703         | 135.325       | 124.443       | 126.998       | 126.754       | 137.669       |
| <b>1m</b> | 121.815           | 144.794          | 193.872                                    | 128.329         | 133.926       | 124.016       | 127.349       | 126.024       | 137.365       |
| Entry     | $\text{C}_7$      | $\text{C}_8$     | $\text{C}_{4a}$                            | $\text{C}_{8a}$ | $\text{CH}_3$ | $\text{C}_1'$ | $\text{C}_2'$ | $\text{C}_3'$ | $\text{C}_4'$ |
| <b>1a</b> | 128.290           | 127.996          | 132.648                                    | 133.491         | 23.106        | 135.632       | 126.814       | 128.381       | 126.699       |
| <b>1b</b> | 128.309           | 127.295          | 132.399                                    | 133.612         | 24.323        | 135.699       | 113.268       | 148.381       | 116.699       |
| <b>1c</b> | 128.941           | 127.929          | 132.476                                    | 133.697         | 24.017        | 125.359       | 127.926       | 118.381       | 146.629       |
| <b>1d</b> | 128.941           | 127.219          | 132.302                                    | 133.571         | 22.998        | 137.398       | 128.907       | 124.381       | 131.899       |
| <b>1e</b> | 128.602           | 127.929          | 132.403                                    | 133.594         | 26.948        | 136.573       | 126.754       | 134.331       | 128.011       |
| <b>1f</b> | 128.697           | 127.979          | 132.499                                    | 133.603         | 26.007        | 133.054       | 126.991       | 129.971       | 134.365       |
| <b>1g</b> | 128.802           | 128.694          | 132.742                                    | 133.901         | 25.721        | 125.675       | 127.621       | 115.064       | 148.346       |
| <b>1h</b> | 128.041           | 128.677          | 132.122                                    | 133.002         | 23.621        | 127.887       | 127.682       | 115.734       | 156.994       |
| <b>1i</b> | 128.769           | 128.883          | 132.538                                    | 133.497         | 25.450        | 127.648       | 127.399       | 114.622       | 159.924       |
| <b>1j</b> | 128.804           | 128.691          | 132.946                                    | 133.753         | 24.963        | 132.148       | 126.453       | 130.101       | 137.597       |
| <b>1k</b> | 127.998           | 128.883          | 132.964                                    | 133.795         | 22.598        | 129.052       | 146.014       | 121.441       | 128.995       |
| <b>1l</b> | 129.532           | 128.964          | 132.064                                    | 133.091         | 22.830        | 136.014       | 122.364       | 147.992       | 130.967       |
| <b>1m</b> | 128.871           | 128.906          | 132.547                                    | 133.226         | 23.001        | 141.365       | 127.995       | 122.001       | 147.599       |
| Entry     | $\text{C}_5'$     | $\text{C}_6'$    | Subst. in Ph ring                          |                 |               |               |               |               |               |
| <b>1a</b> | 128.381           | 126.814          |                                            | —               |               |               |               |               |               |
| <b>1b</b> | 129.587           | 116.618          |                                            | —               |               |               |               |               |               |
| <b>1c</b> | 118.381           | 127.926          |                                            | —               |               |               |               |               |               |
| <b>1d</b> | 129.991           | 124.969          |                                            | —               |               |               |               |               |               |
| <b>1e</b> | 129.971           | 142.766          |                                            | —               |               |               |               |               |               |
| <b>1f</b> | 129.971           | 126.991          |                                            | —               |               |               |               |               |               |
| <b>1g</b> | 115.064           | 127.621          | 41.043 [N(CH <sub>3</sub> ) <sub>2</sub> ] |                 |               |               |               |               |               |
| <b>1h</b> | 115.743           | 127.682          |                                            | —               |               |               |               |               |               |
| <b>1i</b> | 114.622           | 127.399          | 54.325 [OCH <sub>3</sub> ]                 |                 |               |               |               |               |               |
| <b>1j</b> | 130.101           | 126.453          | 24.963 (CH <sub>3</sub> )                  |                 |               |               |               |               |               |
| <b>1k</b> | 135.821           | 127.696          |                                            | —               |               |               |               |               |               |
| <b>1l</b> | 130.967           | 133.365          |                                            | —               |               |               |               |               |               |
| <b>1m</b> | 122.001           | 127.995          |                                            | —               |               |               |               |               |               |

constants produce a fair correlation with carbonyl absorption frequencies in both conformers of all chalcones. Nuclear magnetic resonance spectral data correlation,  $\text{H}_\beta$  chemical shifts correlated with  $\sigma^+$  constants are well correlated than  $\text{H}_\alpha$ . Other Hammett constants produce a fair correlation except  $\sigma_1$  constant. A satisfactory correlation is obtained by correlation of  $\text{C}_\alpha$  and  $\text{C}_\beta$  chemical shifts with Hammett  $\sigma$  and  $\sigma^+$  substituent constants, failure with  $\sigma_R$  values. Overall

collective multi correlation of  $\sigma_1$  and  $\sigma_R$  parameters or  $F$  and  $R$  values with carbonyl frequencies, hydrogen and carbon chemical shifts of vinyl moiety are produce satisfactory correlation.

#### Acknowledgements

The author (G. T.) is thankful to Dr. D. D. Sung, South Korea, financial support for recording NMR spectra of all chalcones and Dr. P. Jaishankar, Post

Doctoral Fellow, France for completion of microanalysis and mass spectra of all chalcones.

## References

- (a) Zhang Z, Dong Y W & Wang G W, *Chem Lett*, 32(10), **2003**, 966; (b) Sagreraa G J & Seoane G A, *J Braz Chem Soc*, 16(4), **2005**, 851; (c) Cave C G V, Taston C L & Scott J L, *Chem Commun*, **2001**, 2159; (d) Tanaka K & Toda F, *Chem Rev*, 100, **2000**, 1025; (e) Chaudhuri K M & Hussian S, *J Chem Sci*, 118, 2, **2006**, 199; (f) Thirunarayanan G & Vanangamudi G, *E-J Chem*, 4(1), **2007**, 90.
- (a) Misra S S Tewari R S & Nath B, *Indian J Appl Chem*, 34, **1971**, 260. (b) John E J & Mathew S B, *J Chem Educ*, 80, **2000**, 1446.
- Venkat Reddy G, Maitraie D, Narasiah B, Rambabu Y & Shanthan Rao D, *Synth Commun*, 13, **2000**, 2884.
- (a) Nielson A T & Houlihan W J, *Org React*, 16, **1968**, 1. (b) Guthrie W, *J Am Chem Soc*, 109, **1991**, 6609. (c) Guthrie W, *Can J Chem*, 69, **1991**, 339.
- Sung D D & Ananthakrishna Nadar P, *Bull Korean Chem Soc*, 20, **1999**, 1487.
- (a) Trost B M & Fleming L, *Comprehensive Organic Synthesis*, (Oxford, Pergamon), 2, **1991**, Parts 1.4-1.7. (b) Norcross R D & Peterson L, *Chem Rev*, 95, **1995**, 2041. (c) Smith M B & March J, *Advanced Organic Chemistry, Reaction, Mechanism & Structure* (New York: Wiley), **2001**, 1218.
- Deli J, Lorand T, Szabo D & Foldesi A, *Pharmazie*, 39, **1984**, 539.
- (a) Winternitz F, Conder G & Vassort P, *Tetrahedron Lett*, 26, **1986**, 5981. (b) Thirunarayanan G, *A J Chem*, 15(2), **2003**, 907. *The Hand Book of Hydroxy Acetophenones* edited by Robert Mortein, Kulwar Press, Paris, France, **2004**.
- Lafen L, 1970 Ger Pp 2010180; 1970, *Chem Abstr*, 73, 120342s.
- Hathaway B A, *J Chem Edu*, 64, **1987**, 367.
- Nakano T, Irfune S, Umano S, Inada A, Ishii Y & Ogawa M, *J Org Chem*, 52, **1987**, 2239.
- Irie K & Watanabe K, *Bull Chem Soc Jpn*, 52, **1980**, 1366.
- Zheng W L, Shao J & Zhong Q, *Synth Commun*, 27, **1997**, 4349.
- (a) Yadav J S, Subba Reddy B V & Nagaraju Sarma J A R P, *Synth Commun*, 32, **2002**, 893. (b) Surya Prakash Rao H & Jothilingam S, *J Chem Sci* 117(4) **2005**, 323.
- Iranpoor N, Zeynizadeli B & Aghapour A, *J Chem Res (S)*, **1999**, 554.
- (a) Deng G S & Ren T G, *Synth Commun*, 33, **2003**, 2995. (b) Salehi P, Khodaei M M, Zolfigol M A & Keyvan A, *Monatsh Chem*, 133, **2002**, 1291.
- Kalluraya B & Ray G, *Indian J Chem*, 42 B, **2003**, 2556.
- Basaif S A, Sobahi T R, Khalil A K & Hassan M A, *Bull Korean Chem Soc*, 26, 11, **2005**, 1677.
- Thirunarayanan G & Vanangamudi G, *ARKIVOC*, (xii), **2006**, 58.
- Misra S S & Tiwari R S, *J Indian Chem Soc*, 50, **1973**, 68.
- Hays W P & Timmons C J, *Spectrochim Acta*, 24A, **1968**, 3239.
- Misra L & Singh A K, *Indian J Chem*, 40A, **2001**, 1288.
- Hammer G K, Peat I R & Reynolds W F, *Can J Chem*, 51, **1973**, 915.
- Dhami K S & Stothers J B, *Can J Chem*, 43, **1965**, 510.
- Wells R P & Arnoid D P, *J Chem Soc, Perkin Trans 2*, **1972**, 1745.
- Doddrell D & Wells R P, *J Chem Soc, Perkin Trans 2*, **1973**, 1333.
- (a) Kitching W, Bullpitt M, Doddrell D & Adcock W, *Org Mag Resonance*, 6, **1974**, 289. (b) Johnson L F & Jonkowski W C, *Carbon-13 NMR Spectra* (New York: Wiley-Interscience), **1972**.
- Misra S S & Tiwari R S, *J Appl Chem*, 34(5), **1971**, 211.
- (a) Silver N L & Boykin D W, *J Org Chem*, 35, **1970**, 759. (b) Perjessy A & Laucova M, *Coll Czech Chem Commun*, 36, **1971**, 2944.
- Renga Reddy S & Manikyamba S, *J Chem Sci*, 118(3), **2006**, 257.
- Dass G K, *Indian J Chem*, 40A, **2001**, 223.
- (a) Sharma A, Gupta V P & Virdi A, *Indian J Pure Appl Phys*, 40(4), **2002**, 246. (b) Krishnakumar V & Ramasamy R, *Indian J Pure & Appl Phys*, 40(4), **2002**, 252.
- Dhami K S & Stothers J B, *Can J Chem*, 43, **1965**, 479.
- Lauterbur P C, *J Am Chem Soc*, 83, **1961**, 1846.
- Savin V I, Gainullina R G, Zuerue V V & Kitaev J P, *Zh Org Khim*, 11, **1975**, 1169.
- (a) Solconiova E & Toma S, *Org Mag Resonance*, 14, **1980**, 138. (b) Solconiova E & Toma S, *Org Mag Resonance*, 8, **1976**, 439.
- Annapoorna S R, Prasad Rao M & Sethuram B, *Indian J Chem*, 41A, **2002**, 1341.
- Sung D D & Ananthakrishna Nadar P, *Indian J Chem*, 39A, **2000**, 1066.
- (a) Rajasekaran K & Gnanasekaran C, *Indian J Chem*, 25A, **1986**, 64. (b) Rajasekaran K & Gnanasekaran C, *J Chem Soc, Perkin Trans 2*, **1986**, 263.
- (a) Thirunarayanan G & Ananthakrishna Nadar P, *J Korean Chem Soc*, 50(3), **2006**, 183. (b) Slobodanka J Mijin D & Mišić-Vuković M, *ARKIVOC*, (x), **2006**, 116, (c) Thirunarayanan G & Ananthakrishna Nadar P, *J Indian Chem Soc*, 83(11), **2006**, 1107. (d) Thirunarayanan G, Gopalakrishnan M & Vanangamudi G, *Spectrochim Acta*, 67A, **2007**, 1106. (e) Thirunarayanan G & Jaishankar P, *Acta Ciencia Indica C*, 29(3), **2003**, 183; A collective Ref. and copy right from British Library Direct Board, **2006**.